If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+8w-1920=0
a = 1; b = 8; c = -1920;
Δ = b2-4ac
Δ = 82-4·1·(-1920)
Δ = 7744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7744}=88$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-88}{2*1}=\frac{-96}{2} =-48 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+88}{2*1}=\frac{80}{2} =40 $
| 2x^-x=5 | | x-0.35x=467.35 | | 2x+32=72/x | | 2(x+16)=72/x | | 4x=-2x=24 | | 3x+5-3x=2 | | 7m+42=224 | | m7+42=224 | | 2x^2+27x-99=0 | | -7x+14=-10-2x | | (x+20=180 | | 3x-10=-2x+15 | | 1/3x+4x/6=1 | | -8+4x=-32=25x | | x+2/x+3=x-6/x-9 | | 2x-5=12x+35 | | 2x-5=12x+x | | 0=1x+10x^2-21 | | h^2-2h-54=0 | | -3(2x+1)=-2x-7 | | 7x-14=8x+9 | | 4z/10+5=0 | | 4x-4+4(2-3x)=0 | | 3m+5/2=8 | | 9-4(2-3x)=5x+8 | | F(x)=10x^2-8x-2 | | 2z/7+4=-5 | | 5x-3x=-5+25 | | z/9+6=7 | | z/7=7=5 | | 63=p+19 | | 9x-15=5x-7 |